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WHAT IS ALREADY KNOWN ABOUT
THIS SUBJECT

receptor type 1 (CB1) antagonist (rimonabant)
negatively affected cannabinoid antagonist
research. The recently developed peripheral
CB1 antagonist (e.g. TM38837) showed a
larger specificity for peripheral effects than for
central effects and confirms potential medical
benefit without the central side effects. It is

target sites.

WHAT THIS STUDY ADDS
• This study retrospectively collected data of
four CB1 antagonists in THC challenge test in

benchmark simulations were conducted to
compare directly dose–efficacy profiles of
different CB1 antagonists, which gave insight
into future development of cannabis based
medicines.
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AIM
The severe psychiatric side effects of cannabinoid receptor type 1
(CB1) antagonists hampered their wide development but this
might be overcome by careful management of drug development
with pharmacokinetic/pharmacodynamic (PK/PD) analyses. PK/PD
models suitable for direct comparison of different CB1 antagonists
in Δ9-tetrahydrocannabinol (THC) challenge tests in healthy vol-
unteer were constructed.
crucial to understand how a specific

antagonist affects the central or the peripheral
 METHODS
The pharmacokinetic models of THC and four CB1 antagonists
were built separately. THC-induced effects on heart rate and the
visual analogue scale of feeling high in healthy volunteers and
inhibitive effects of CB1 antagonists on THC-induced effects
were modelled in PD models linked to the PK models. Simula-
tions were then applied to evaluate the reduction rate of each
antagonist on the reversal of the THC-induced effect in a unified
simulation scenario.
healthy volunteers. Integrated population

PK/PD modelling was constructed and
 RESULTS
The final PK model of THC and antagonists was a two
compartment model. An Emax model and logistic regression
model were used for effect measures and the antagonist effect
was added in these models in a competitive binding manner.
t1/2ke0 ranged from 0.00462 to 63.7 h for heart rate and from
0.964 to 150 h for VAS. IC50 ranged from 6.42 to 202 ng ml�1 for
heart rate and from 12.1 to 376 ng ml�1 for VAS. Benchmark
simulation showed different dose–efficacy profiles of two effi-
cacy measures for each CB1 antagonist.
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CONCLUSIONS
PK/PD modelling and simulation approach was suitable for
describing and predicting heart rate and feeling high for CB1
antagonists in THC challenge tests. Direct comparison of four
antagonists based on simulated efficacy profiles might be of
benefit to guide future studies.
Introduction

Obesity is one of the world wide, emerging, serious, life
threatening diseases [1]. The lack of efficient and well-
tolerated drugs to treat obesity has led to an increased
interest in new targets for the development of new drugs
[2, 3]. A specifically interesting target is the CB1 receptor,
which is located in the central nervous system (CNS) and
at peripheral sites such as the heart, liver, pancreas and
adipose tissue [4, 5]. At these sites, the CB1 receptor has
a modulatory role in the regulation of a variety of com-
plex physiological systems, such as the nervous system,
and the digestive and endocrine system in metabolism
[for a review, see [6]]. Activation of the CB1 receptor leads
to effects including feeling high and altered time
perception, increased body sway and getting hungry
(‘the munchies’) (for a review, see [7]).

This widespread involvement of the CB1 receptor and
its ligands provides numerous opportunities for the
development of new medicines for neuronal and meta-
bolic disorders including movement disorders, diabetes
mellitus and dyslipidaemia. In the late 1990s the pharma-
ceutical industry became particularly interested in the
metabolism effects of CB1 receptors and focused on
new chemical entities that could decrease appetite by
CB1 receptor antagonism. It was found that CB1 antago-
nists were indeed able to block feeding behaviour and
they also showed other characteristics (including
decreased gastric emptying and increased insulin sensi-
tivity [2, 8]) that underlined the potential of CB1 antago-
nists in obesity treatment.

In 2006, the first CB1 antagonist rimonabant (formerly
known as SR141716) was registered for the treatment of
obesity and overweight with obesity-associated disor-
ders [9]. Besides rimonabant, Sanofi developed more
CB1 antagonists, such as drinabant (formerly known as
AVE1625 with possible inverse agonism properties) and
surinabant (SR147778). However, in 2008, rimonabant
was withdrawn from the market due to unacceptable
psychiatric adverse effects. Almost all pharmaceutical
companies, including Sanofi, terminated all studies in-
volving CB1 receptor antagonists (such as rimonabant,
otenabant and taranabant).

Nevertheless, there are studies suggesting that the
beneficial metabolic effects of rimonabant might be
regulated predominantly by peripheral CB1 receptors,
whereas the psychiatric side effects could be regulated
by centrally located CB1 receptors [10, 11]. There is con-
siderable evidence to suggest that the beneficial meta-
bolic effects of CB1 antagonists are mediated by CB1
receptors that are present at locations which are specifi-
cally associated with metabolic regulation, such as the
liver, the pancreas and fat cells [4, 5, 12]. If the therapeu-
tic effects of CB1 antagonists have their target site in pe-
ripheral tissues and the (serious) side effects originate in
certain regions of the CNS, it is crucial to understand how
a specific antagonist could affect the several central and
the peripheral target sites.

One of the problems with the investigation of the
different sites and effects of CB1 antagonism is that there
are no validated measurements of these effects after acute
administration of CB1 antagonists or in healthy subjects. To
partly overcome this problem, challenge tests with the
CB1/2 partial antagonist Δ9-tetrahydrocannabinol (THC) were
developed [13–15]. With this challenge test, the
endocannabinoid system is stimulated using THC, which
induces a range of dose- and concentration-related re-
sponses. Several of these measures, such as the charac-
teristic euphoric ‘high’ feeling, are clearly indicative of
central nervous system effects. Other parameters like heart
rate are more likely to be peripherally mediated [14, 16].
The THC challenge has been found to be an effective tool
to demonstrate the pharmacological effects of a CB1 antag-
onist, since co-administration of a selective CB1 antagonist
causes a near complete block of the acute THC-induced ef-
fects. The use of the variety of measures such as feeling
high, body sway and heart rate allow us to create individ-
ual effect profiles for the different CB1 antagonists.

Previously, our clinical research centre separately in-
vestigated the concentration–effect relationships of four
different CB1 antagonists, rimonabant, surinabant,
AVE1625 (drinabant) and TM38837 [13, 17]. This was per-
formed in three separate studies by using THC challenge
tests, all with different THC dosages and dosing time in-
tervals. This approach allowed us to analyze the pharma-
cological characterization of the individual antagonists.
However, a thorough comparison among the antago-
nists was hampered by the different dose regimes of
the THC challenge tests. In the current study, we built
an integrated pharmacokinetic/pharmacodynamic (PK/
PD) model for all antagonists that would compensate for
these differences between the THC challenge tests,
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allowing a direct comparison of the different CB1 antago-
nists with regards to PK and PD characteristics.

PK/PD modelling is an approach to characterize the
concentration–time profile and the relationship between
concentrations and effects using a mathematical model.
Model estimation can be based on both individuals
and populations. The assumption that all individual
concentration–effect relationships can be described with
the same structural model is based on the notion that the
drug activates the same pharmacological system in all
subjects (or systems for different responses). PK/PD
modelling is performed by using a non-linear mixed
effect modelling approach which provides estimates of
the population average parameters (assuming that each
individual can be described using the same structural
model) and their associated inter-individual variability,
which allows individuals to differ from each other.
Residual error describing the variability of the difference
between predicted values and the observations is also
estimated [18, 19]. Simulation is a subsequent step, fol-
lowing the modelling. It can be used to predict model
outcomes using an existing model structure given differ-
ent scenarios (model input), for instance with different
dosages, sampling times and other covariates.

Our first aim was to build an integrated PK/PD model
that would be suitable for direct comparisons of pharma-
cological compounds in a complex clinical setting using
a pharmacological challenge test. We would do this for
four different CB1 antagonists (drinabant, surinabant,
rimonabant and TM38837) and a THC challenge test for
efficacy parameters feeling high and heart rate. Our sec-
ond aim was to apply the model for direct comparisons
of the different pharmacokinetic profiles and efficacy of
the four different CB1 antagonists to understand better
the behaviour of CB1 antagonists in healthy humans.
Methods

Study designs
From 2003 until 2009, three THC challenge studies were
performed at CHDR in healthy male volunteers, in which
four CB1 antagonists were administered, a study with
drinabant (AVE1625), one with surinabant (SR147778)
and another study that investigated both rimonabant
Table 1
Subject demographics. Mean with standard deviation (SD)

Name of
study

Subject
number

Age
(years)

Weight
(kg)

Height
(cm)

BMI
(kg m

�2
)

Drinabant 36 22.0 (3.0) 76.0 (11.0) 183.0 (6.0) 23.0 (3.0)

Surinabant 30 23.2 (5.3) 79.0 (8.2) 187.7 (6.7) 22.4 (1.9)

Rimonabant-
TM38837

36 21.2 (3.8) 77.3 (10.2) 183.4 (7.0) 22.9 (2.1)

BMI, body mass index.
(SR141716) and TM38837 (referred to as ‘the rimonabant-
TM38837 study’) [16, 20]. The three studies were all per-
formed in a double-blind, randomized, placebo-controlled,
(partial) crossovermanner. The complete design and clinical
results of these studies were published separately [13, 17].
The treatments per study and subject demographics are
summarized in Table 1 and Table 2, respectively. In
short, each CB1 antagonist or placebo administration was
followed by a series of inhaled doses of a vaporized solu-
tion of THC in ethanol or THC vehicle, which consisted only
of vaporized ethanol. THC was vaporized using a Volcano
vaporizer® (Storz & Bickel GmbH & Co. KG, Tuttlingen,
Germany). In each study, the first THC dose was adminis-
tered around the expected tmax of the CB1 antagonist.
Blood samples for PK and selected PD responses were
taken accordingly after multiple THC challenge and/or
antagonist administration and the last sampling time
points were shortly after the last challenge dose of THC.

Pharmacokinetic and pharmacodynamic
measurements
Blood samples of THC and four antagonists were ana-
lyzed as published before [13, 17]. In short, THC
samples were measured using tandem mass spectrome-
try with a lower limit of quantification of 0.1 ng ml�1.
Concentration of AVE1625 was measured using flow
chromatography-mass spectrometry/mass spectrometry
(TFC-MS/MS) and the limit of quantification was
0.2 ng ml�1. The concentration of surinabant was
measured using liquid chromatography coupled with a
tandem mass spectrometry (LCMS/MS) method with a
lower limit of quantification (LLOQ) of 1.0 ng ml�1. Con-
centrations of TM38837 and rimonabant were measured
by liquid chromatography with a tandem mass spec-
trometry method with a lower limit of quantification of
0.1 ng ml�1 for TM38837 and 1.0 ng ml�1 for rimonabant.

In all studies, visual analogue scales (VAS) according
to Bowdle (psychedelic effects) and heart rate were
assessed frequently [15, 21]. Heart rate was measured
using a Nihon-Koden BSM-1101 K monitor (Lifescope
EC, Tokyo, Japan) blood pressure apparatus. The adapted
version of the Bowdle scales consists of 100 mm visual
analogue lines, to indicate subjective feeling high, and
on a range of other subjective effects that cluster as fac-
tors internal perception and external perception, both
composite scores that are affected differently by THC as
previously described [15].

Modelling and simulation
PK and PK/PD modelling was performed using a popula-
tion approach non-linear mixed effect modelling pro-
gram, NONMEM 7.1.0 [18]. Non-linear mixed effect
modelling considers the repeated observations as a func-
tion of time in a population of individuals. The model to
describe these observations adopts a common structural
model and distribution of residuals, while allowing the
Br J Clin Pharmacol / 81:4 / 715



Table 2
Treatments per study

Name of study Treatment

Time of THC
administration after
antagonist administration (h)

THC challenge
administration dosage (mg)

Drinabant Placebo drinabant + THC vehicle 3, 4, 5, 6 2, 4, 6, 6

Placebo drinabant + THC challenge

20 mg drinabant + THC challenge

60 mg drinabant + THC challenge

120 mg drinabant + THC challenge

120 mg drinabant + THC vehicle

Surinabant Placebo surinabant + THC vehicle 1.5, 2.5, 3.5, 4.5 2, 4, 6, 6

Placebo surinabant + THC challenge

5 mg surinabant + THC challenge

20 mg surinabant + THC challenge

60 mg surinabant + THC challenge

60 mg surinabant + THC vehicle

Rimonabant-TM38837 Placebo TM38837 + Placebo rimonabant + THC vehicle 2, 4.5, 7, 22, 24.5* 4, 4, 4, 4, 4

Placebo TM38837 + Placebo rimonabant + THC challenge

100 mg TM38837 + Placebo rimonabant + THC challenge

500 mg TM38837 + Placebo rimonabant + THC challenge 4, 6.5, 9, 24, 26.5† 4, 4, 4, 4, 4

Placebo TM38837 + 60 mg rimonabant + THC challenge

Placebo TM38837 + Placebo rimonabant + THC challenge

*Time of THC administration after rimonabant administration. †Time of THC administration after TM38837 administration.

Z. Guan et al.
parameters in the model to vary between individuals. The
location (typical value or fixed effect) and spread between
individuals (variability or random effect) of the model pa-
rameters are estimated by fitting the parameters to the
data by minimizing an objective function based on the
log likelihood (�2 × LL). Using the population values (both
location and spread), individual specific empirical Bayes’ es-
timates (post hoc estimates of individual deviates (ETAs)
Figure 1
Schematic representation of the PK/PD models
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from the random effects distributions) are determined that
allow description of individual time profiles.

Different models are compared with increasing com-
plexity in the structural model and the number of ran-
dom effects. The objective is to find the simplest model
that describes the data adequately. Competing models
are compared using the likelihood ratio test, which com-
pares the difference between log-likelihoods for the
models (difference in objective function value, ΔOFV) to
a chi-square distribution with degrees of freedom corre-
sponding to the difference in number of parameters be-
tween the two models (P value used was less than 0.01:
ΔOFV = �6.63). Models were qualified by visual inspec-
tion for goodness of fit and check of weighted residuals.

A general overview of the two step modelling ap-
proach is displayed in Figure 1. First, PK models for THC
and the four antagonists were built separately for every
compound to obtain estimated PK parameters based
on OFV and goodness of fit. The PK model was only built
to describe optimally the PK profile. Therefore, a separate
THC model (if possible with a similar structure) was built
for each of the three studies. Secondly, the PK/PD model
was built. The integrated models only regard the PD
models to enable direct comparison of the different CB1
antagonists. Individual empirical Bayes’ estimates were
determined to describe the concentration profile and
used in the subsequent PK/PD analyses. Parameter esti-
mation for population PK modelling of THC and antago-
nists was performed under ADVAN 5 and the PK/PD
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modelling of all PD parameters was performed under
ADVAN6 TOL 5. The RSE (relative standard error) was cal-
culated for all parameters. Inter-individual variability (IIV)
and inter-occasion variability was expressed as coeffi-
cient of variation (%CV) using:

%CV ¼ 100�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp ω2ð Þ � 1

p
(1)

First order conditional estimation (FOCEI) with inter-
action was the standard method of estimation, with the
exception of VAS feeling high PD model, for which
LAPLACE was used. Within each model, additive and/or
proportional residual error models were compared.

Pharmacokinetic and pharmacodynamic
analyses
The population PK model of THC was based on the
results of previous CHDR studies with multiple THC inha-
lations, using a two compartment model with bolus ad-
ministration [14] and first order elimination. PK analyses
of the four antagonists were performed in a similar way
with compartmental model, including first order absorp-
tion and first order elimination.

A biophase compartment is used when drug action is
delayed by distribution from plasma to the site of action.
The rate of equilibration of drug in the plasma with the
site of action is denoted ke0, the rate constant for exit
of drug from the biophase compartment [22–24].

A biophase compartment was first used to account for
the delayed response of VAS. To minimize the effect of
over- and under-dispersion due to the subjectivity of the
VAS scale and to include non-response in the model, the
VAS feeling high scale was translated into a binary scale,
to accommodate the possibility to construct a probability
model for feeling high. The anchor point for this translation
was the median of all scores higher than 0 (on a 100 point
scale) for the treatment arms where only THC was dosed.
Inverse logit transformation is used for binary data:

P VAS > CUTð Þ ¼ exp �kd�TADð Þ� exp xð Þ
1þ exp xð Þ (2)

with

x ¼ β1�CTHC

1þ β�CAntgonist
(3)

in which CUT was the anchor point that changed de-
pending on the study, β1 is the coefficient of THC effect
and βis the coefficient of the shift of the THC effect
caused by the antagonist. The effect of antagonists in
the above equation reverses the THC induced increase
in probability of scoring a VAS > CUT. Every subject re-
ceives multiple THC inhalations, causing a tolerability
that affected the scores of the VAS. To cope with this,
Kd, the elimination rate of tolerance, was included to
decrease the possibility of feeling high caused by time
factor TAD, the time after the first dosing time point.

A biophase compartment was used to account for the
delayed response of heart rate as well. Because all the an-
tagonists bind with the CB1 receptor in competition with
THC, the biophase compartment concentration of THC
and respective antagonist was used for the PD analyses
by using a maximum effect equation (Equation (4)). In
this equation, the antagonist could cause a shift to the
right of the apparent EC50 depending on the impact of
the THC challenge effect and the effect is described as:

E ¼ E0 þ Emax�CTHC

EC50 þ CTHC þ β�CAntagonist
(4)

where E0 is the baseline of the effect, Emax is the maximal
achievable effect, CTHC is THC concentration in biophase
compartment, EC50 is the concentration that causes
50% of the Emax, β is the coefficient that describes the an-
tagonist shift by the THC effect and CAntagonist is the CB1
antagonist concentration in the biophase compartment.
In practice, it was observed that the baseline of heart rate
was around 60 beats min–1. After treatment with THC or
together with CB1 antagonists, heart rate increased. Once
heart rate became higher than around twice that of the
baseline, there was a big proportion of the subjects
who could not finish the rest of the measurements. Given
this observation, we tried two approaches which were
fixing Emax effect to two folds of baseline or estimating
Emax without fixing it.

Based on PD model parameters, IC50 and t1/2ke0 can
be then be derived from parameter estimation by using
equations (3) and (4). These two parameters describe
the inhibition potential of CB1 antagonists. IC50 is a mea-
sure of the effectiveness of a compound in inhibiting bi-
ological function. It indicates how much of a particular
antagonist is needed to inhibit a given effect of THC by
half. t1/2e0 is the apparent half-life of a drug effect. It is de-
rived from ke0, which indicates the rate constant of the
elimination of a drug effect:

IC50 ¼ EC50

β
(5)

t1=2ke0 ¼ log2

ke0
(6)

Visual predictive checks
Visual predictive checks (VPC) were performed for all PK
and PD models using R version 2.12.0 (R: A Language
and Environment for Statistical Computing, R Develop-
ment Core Team, R Foundation for Statistical Computing,
Br J Clin Pharmacol / 81:4 / 717
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Vienna, Austria, 2010) with the lsoda (deSolve Package
1.8.1) and mvrnorm functions (MASS Package v7.3–8).
The visual predictive check encompassed a projection
of the simulated dependent variable as a function of time
using the final model on the observations. The simula-
tions were performed considering the estimated popula-
tion parameters (Θ vector) as well as the covariance
matrix describing IIV (Ω matrix). The residual variability
(Σmatrix) was not included in the simulations. The simu-
lations and the data were grouped by dose of antago-
nists. Summary statistics of the simulations (median and
the 95% prediction interval of the simulated IIV) enabled
a comparison of the predicted and the observed variabil-
ity. For each dose group 1000 individuals were simulated.

Simulation
We selected a benchmark scenario to try to cover maxi-
mally the major part of the original study designs. Due
to differences in tmax, the time points of the first THC ad-
ministration relative to the antagonist administration
were different among the different study designs. As
original study designs, the time between administration
of CB1 antagonists and first THC was the same as the tmax

of antagonist. In this way, the first THC inhalation would
be administered at the expected tmax of CB1 antagonists.
We kept this the same in the benchmark scenario and we
compensated for these differences by simulating the
THC challenge profile rather than using the actual chal-
lenges. During this simulated challenge, individuals re-
ceived four doses (2, 4, 6 and 6 mg) of THC inhalation
at hourly intervals. Drinabant, surinabant, rimonabant
and TM38837 were simulated as single dose adminis-
tered at 3, 1.5, 2 and 4 h before THC challenge, respec-
tively, similar to the dose regimens in the actual
studies. A wide dose range of the antagonists was simu-
lated with dosages from 2mg to 1000 mg to optimize the
dose–response curve. For surinabant, when dose is
higher than 60 mg, the simulation used a surinabant PK
model with the assumption that Ka did not change when
dose was higher than 60 mg. The reduction ratio (RR) was
used as drug response in the dose–response curve and
was calculated as the difference between the area under
Table 3
PK parameters of THC in the different studies, with the relative standard error

Drinabant Surin

Parameter Estimate (%RSE) IIV IOV Estima

Clearance/F (l h
�1

) 228.1 (5.2) 18.8 - 228

Central volume/F (l) 35.5 (7.0) 10.3 - 35

Peripheral volume of distribution/F (l) 145.4 (6.5) - - 103

Intercompartmental clearance/F (l h
�1

) 134.3 (6.1) - - 127

F, bioavailability; IOV, inter-occasion variability (%).
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the curve (AUC) of the PD response of the THC challenge
only and the THC challenge + antagonist. For AUC
calculation observations were used from the first
administration of THC until 1 h after the fourth THC
administration. The reduction rate was calculated as:

RR ¼ AUCTHC−AUCAntagonistþTHC

AUCTHC
*100 (7)

where RR is the reduction ratio, AUCTHC is the area under
the curve of THC alone and AUCAntagonist + THC is the area
under the curve of co-administration of THC and the an-
tagonist. The difference between RRs of two PD markers
for each drug will also be calculated to assist effects com-
parison and dosage selection.

Simulations were performed in a similar way as for
VPC by implementing the identified models and the esti-
mated parameters in R using the function lsoda from the
deSolve library (version 1.8.1) and the function mvrnorm
from the MASS library (version 7.3–8). The results of the
simulations were used to plot the population typical
dose–response curves.
Results

THC pharmacokinetic modelling
In all three studies, a two compartmental structure model
with first order elimination was the best model to de-
scribe the THC concentration–time curve. The pulmonary
administration was implemented as a bolus input in the
central compartment.

The PK parameters of THC of the three separate stud-
ies are presented in Table 3. No significant differences
were found among the studies for the model parameter
estimations and they were also similar to the parameters
from the models by Strougo et al. [14]. All RSEs of the es-
timations were smaller than 30% (from 5.2% to 14.3%).
Inter-individual variability (IIV) was identified on the ap-
parent central distribution volume, ranging from 10.3%
to 40.8%. IIV on apparent clearance was 18.8% and
31.2% for the drinabant study and the rimonabant-
(RSE, %) and the inter-individual variability (IIV) as %CV

abant Rimonabant-TM38837

te (%RSE) IIV IOV Estimate (%RSE) IIV IOV

.1 (7.4) - - 200 (5.9) 31.2 -

.2 (8.9) 38.5 76.0 28.5 (8.9) 40.8 25.1

.4 (6.8) - - 107 (14.3) - -

.7 (7.2) - - 106 (6.9) - -



Table 5
PK/PD parameter estimates of THC alone for heart rate and VAS feeling
high with percentage coefficient of variation (CV)

Parameter Units Estimate (%RSE) IIV IOV

Heart rate t1/2 (h) 0.3. (28.2) -- --

E0 (beats min
–1
) 64.2 (1.1) 8.0 5.9

Emax (beats min
–1
) 64.2 (��) -- --

EC50 (ng ml
�1

) 73.7 (18.4) -- --

Feeling high t1/2 (h) 2.3 (16.3) -- --

CUT1 2.8 (3.0) -- --

βTHC �0.5 (16.7) -- --

Kd 0.1 (18.6) -- --

t50, equilibration half-life of the elimination from the biophase compartment;
Emax, maximal effect; EC50, concentration at 50% of maximal effect; IIV, inter
individual variability; IOV, inter occasion variability; βTHC, coefficient of the
antagonist-induced shift of the THC effect; Kd, elimination rate of tolerance.

PK/PD modelling and simulation for effects of CB1 antagonists in THC challenge test
TM38837 study, separately. For the surinabant study the
IIV on the apparent clearance could not be identified.
Additionally, inter-occasion variability on the apparent
central distribution volume was included to account for
differences in bioavailability between individual dosing
occasions in the surinabant study and the rimonabant-
TM38837 study and was 78.0% and 25.1%, respectively.
The residual error model was only proportional to
concentration.

Antagonist pharmacokinetic modelling
The PK models of the four antagonists were built sepa-
rately. All of them could be described using a two com-
partmental model with first-order elimination and first
order absorption. Surinabant was found to have a lag
time of 0.6 h (RSE = 5.7%) and its ka was dose-
proportional with a dose effect of 0.005 (RSE = 14.4%)
as defined by the following equation:

ka doseð Þ ¼ 0:4� 1� α� doseð Þ (8)

in which α is the dose effect to ka. For each compound,
the RSEs of the parameter estimations varied between
3.9% and 42.4% (Table 4). IIV and IOV were incorporated
in the model if it improved goodness of fit. IIV for the
clearance of surinabant, rimonabant and TM38837
ranged from 25.6% to 66.2%. For apparent central distri-
bution volume, the IIV varied from 20.6% to 132.0%. The
goodness of fit plot was improved by adding an IOV of
24.0% for the central distribution volume of drinabant.
Inspection of the data showed that the upswing of the
concentration after administration of rimonabant was in-
sufficiently detailed to estimate the first order absorption
rate constant. Therefore, this parameter was fixed to the
value for the absorption rate constant as reported by
Martinez [25]. The PK parameter estimations of the an-
tagonists were presented separately in Table 4, including
the RSE, inter-individual variability and inter-occasion
variability. VPCs and diagnostic plots were also per-
formed for all four antagonists PK model for model
validation.
Table 4
PK parameters of drinabant, surinabant, rimonabant and TM38837 with the relativ

Drinabant Surinabant

Parameter Estimate (%RSE) IIV IOV Estimate (%RS

Clearance/F (l h
�1

) 32.5(14.8) - - 4.4(12.7

Central volume/F (l) 212.7(9.6) 36.3 24.0 5.0(16.3

Peripheral volume of distribution/F (l) 2164.6(30.0) - - 515.0(12.5

Intercompartmental clearance/F (l h
�1

) 32.5(11.4) - - 15.9(6.5)

Absorption rate constant (ka, h
�1

) 1.1(8.2) 39.8 - 0.4(3.9)

Dose effect on ka* (α) - - - 0.005(14.4

Lag time(h) - - - 0.6 (5.7)

Dose effect on ka: ka (dose) = ka × (1 – α × dose). 1F, bioavailability; IOV, inter-occasion varia
The THC-induced effects were modelled using data
from treatment arms with THC dosages only. To enable a
direct comparison of the antagonists, an integrated THC
PD model was applied on the three trials for the same set
of PD parameters, heart rate and feeling high. An Emax

model gave the best fit for heart rate. The baseline was es-
timated at 64.2 beats min–1 with a RSE of 1.1%. Within the
study, the highest heart rate observed was around
120 beats min–1. Although physiologically, higher heart
rates are possible for higher THC dosages, we chose to fix
the Emax of heart rate to two times the baseline, resulting
in proper diagnostic plots and VPCs. IIV and IOV were both
incorporated at the baseline at 7.98% and 5.91%. RSEs of all
heart rate model parameters were below 30%.

A logistic regression model was used for modelling
the VAS feeling high, the parameters of which had a rel-
atively low RSE (smaller than 20%). The estimated param-
eters of VAS feeling high are shown in Table 5.

Antagonist pharmacodynamic modelling
An effect compartment was built for THC and the
antagonists to describe the time delay between the
e standard error (RSE, %) and the inter-individual variability (IIV) as %CV

Rimonabant TM38837

E) IIV IOV Estimate (%RSE) IIV IOV Estimate (%RSE) IIV IOV

) 62.5 - 9.3 (6.9) 25.6 - 2.2 (9.3) 66.2 -

) 66.4 - 39.3 (15.5) 20.6 - 18.7 (16.3) 132.0 -

) 102.0 - 93.0 (12.8) - - 10.8 (42.4) - -

91.2 - 17.9 (17.2) - - 0.01 (22.0) - -

7.8 - 1.2 (fixed) - - 0.08(9.7) - -

) - - - - - - - -

- - - - - - - -

bility (%).
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concentration–effect profiles. For the heart ratemodel, fixing
approach showed better model fitting and prediction on
both a population and individual level given one less param-
eters estimate. Therefore, fixing approach was selected for
the final heart rate model. An equilibration half-life (t1/2keo)
was defined, which ranged from 0.005 (0.5%) to 63.7
(35.4%) h for heart rate with all RSEs smaller than 100%
and 1.0 (193.0%) to 150.0 (16.8%) h for VAS. These wide CV
ranges suggested a large variability in drug distribution rates
to the target locations for the different antagonists.
Rimonabant presented a relatively high RSE, which was the
Table 6
PK–PD parameter estimates of antagonists for VAS feeling high, body sway an

Parameter Units Estimate(%RSE)

Drinabant

Heart rate t1/2e0 (h) 6.3(34.6)

IC50 (ng ml
�1

) 6.4(36.9)

Feeling high t1/2e0 (h) 1.8(34.7)

IC50 (ng ml
�1

) 12.1(25.9)

t1/2e0, equilibration half-life; IC50, concentration of antagonist at 50% of maximal inhibition.

Figure 2
Simulated dose–effect relationship and the estimated reduction rate (i.e. antag
high (dashed line) of (A) drinabant, (B) surinabant, (C) rimonabant and (D) TM3
than 60 mg, the simulation used surinabant PK model with assumption that Ka
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only one that was bigger than 100%. This suggested a low
uncertainty of the parameter estimation.

The range of IC50 also varied widely, from 6.4 (36.9%)
to 202.0 (38.6%) ng ml�1 for heart rate and from 12.1
(25.9%) to 376.0 (15.3%) ng ml�1 for VAS feeling high
with all RSE smaller than 100%.

All PD parameter estimates of the four different
antagonists are presented in Table 6. Both diagnostic plot
and VPC were performed, which confirmed that the pro-
posed model fitted the data properly with acceptable pre-
dictive ability.
d heart rate with percentage coefficient of variation (CV)

Estimate(%RSE) Estimate(%RSE) Estimate(%RSE)

Surinabant TM38837 Rimonabant

0.005(0.5) 63.7(35.4) 1.1(26.3)

107.0(34.4) 175.0(36.6) 202.0(38.6)

6.7(62.9) 150.0(16.8) 1.0(193.0)

61.6 (44.9) 376.0(15.3) 92.8(65.0)

onism of THC-induced effects) of heart rate (solid line) and VAS feeling
8837. The grey line represents that for surinabant, when dose is higher
did not change when dose was higher than 60 mg



Figure 3
Simulated dose-estimated reduction rate difference of heart rate and feeling high: (A) drinabant; (B) surinabant; (C) rimonabant; (D) TM38837. The grey
line represents that for surinabant, when dose is higher than 60mg, the simulation used surinabant PK model with assumption that Ka did not change
when dose was higher than 60mg

PK/PD modelling and simulation for effects of CB1 antagonists in THC challenge test
Dose–response curve simulations
The simulations of two dose–response curves (in this
case dose reduction rate curves) of the antagonists are
graphically displayed in Figure 2. The dose range for
the simulation ranged from 2 to 1000 mg. All antagonists
caused a maximal reduction of THC-induced effects of
70% to 85%. The order and shape of the curves that de-
pict the relations between dosages and reduction rates
varied considerably among the different CB1 antagonists
and effects. For example, the reduction rates for heart
rate were larger than for VAS feeling high in the case of
drinabant and TM38837, whereas for surinabant and
rimonabant, VAS feeling high had a higher reduction rate
than heart rate. A set of plots derived from Figure 2 which
calculated the difference between heart rate RR and VAS
feeling high RR changed via dose increasing were also
generated as shown in Figure 3. Positive reduction rate
difference represented higher effect on heart rate while
negative reduction rate difference represented higher ef-
fect on VAS feeling high. The plot also provided the max-
imum and minimum reduction rate difference which
could provide a dosage selection indicator to find out
the preferred dosage. For example, drinabant and
TM38837 showed constant positive reduction difference.
This indicated that these two CB1 antagonists showed
better effects on heart rate and the maximum value of
the lines suggested that they presented the biggest dif-
ference between heart rate and VAS feeling high effect
at doses around 40 mg and 380 mg, separately. For
surinabant and rimonabant, they consistently showed a
bigger effect on VAS feeling high and the maximum dif-
ference of the two PD markers was achieved at a dosage
of 80 mg and 45 mg separately.
Discussion

Our aims were to build integrated PK/PD models for THC
and four CB1 antagonists and to apply them for direct com-
parison of the different antagonists to improve our under-
standing of the behaviour of CB1 antagonists in healthy
volunteers.

We found that our PK/PD modelling and simulation
approach was suitable for direct comparisons of phar-
macological compounds in complex clinical settings
using a THC challenge test, even when the data
Br J Clin Pharmacol / 81:4 / 721
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camefrom different studies with different THC dosing
regimens. Our integrated PK/PD models have a few
advantages and disadvantages compared with the indi-
vidual PK/PD models that we built in previous studies
[13, 14, 17]. Integration on the PD level enabled us to
compare the different antagonists directly. However
this approach resulted in enlarged inaccuracy of param-
eter estimation. The method of calculating the inhibi-
tion ratios of the antagonists as performed in the
surinabant study and the rimonabant-TM38837 study
was highly dependent on sampling time points and
did not consider the whole effect–time profile [13, 14,
17], while our study presented an improved method
to calculate inhibition ratios based on the AUC of PD
responses. In this way, we were able to make estima-
tions along the whole time–effect curve.

We have found that surinabant and rimonabant in-
duced larger effects on inhibition of THC-induced VAS
feeling high than on inhibition of THC-induced heart
rate increase, whereas drinabant and TM38837 showed
an opposing behaviour. This was consistent when
(graphically) comparing the findings from previous
studies [13, 15, 17]. The different effect profiles in
healthy humans of drinabant and TM38837 compared
with surinabant and rimonabant suggest differences
in clinical efficacy in patient groups. Considering the
previously suggested associations of heart rate effects
and peripheral effectivity, it would be tempting to im-
ply that drinabant and TM38837 have a larger prefer-
ence for peripheral target sites, resulting in larger
peripheral effects compared with centrally induced
effects. This would be a more desired effect profile,
considering the severe unwanted psychiatric side
effects as previously observed at clinical rimonabant
dosages. However, patient studies are needed to
investigate the efficacy of compounds with increased
peripheral selectivity and their translation to efficacy
parameters in healthy volunteers.

Despite the market withdrawal of rimonabant, it
would still be very interesting to investigate the efficacy
and tolerability of rimonabant as well as surinabant in
more detail. From our previous research [17], we ana-
lyzed that the clinically used CB1 antagonist dosages
and steady-state plasma concentrations were well above
the dosage and concentration that maximally blocked
THC-induced effects. The analyses were performed over
specific time periods during which the antagonist con-
centrations where at maximum reaching maximum
inhibition of THC-induced effects. This implies that the
clinically applied rimonabant dosage might have been
higher than needed to induce favourable therapeutic
effects and high enough to induce severe unwanted side
effects. We hypothesize that a lower dose and concentra-
tion of rimonabant (and the right dose for surinabant)
might result in an acceptable balance between efficacy
and side effects, which could be different for different
722 / 81:4 / Br J Clin Pharmacol
patient groups. To confirm this, future research should
perform additional patient studies and carefully translate
our model (i.e. the results from studies in healthy sub-
jects) to patient groups.

In conclusion, we were able to build suitable PK/PD
models in which the CB1 antagonists, drinabant,
surinabant, rimonabant and TM38837, and the agonist
THC were integrated. We found that the effects of the
antagonists showed different profiles, with drinabant
and TM38837 showing relatively larger heart rate
effects than effects on VAS feeling high compared
with surinabant and rimonabant. The graphic result
(Figure 3) also helped dose selection. We suggest
that drinabant and TM38837 might have a larger
therapeutic potential than rimonabant and surinabant,
due to the potential higher risk of severe psychiatric
side effects for the latter two compounds, which is
based on their relatively large central effects (i.e.
feeling high).
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